Laboratory of Chemical
Synthesis Methodology
The Kalek Research Group

List of Publications

53. Electrochemical oxidations through hypervalent iodine redox catalysis
Bernard, R. S.; Jha, A. K.; Kalek, M.
Tetrahedron Chem 2024, 11, 100081 (invited review). [Open Access PDF]


52. Electrochemical dearomatizing methoxylation of phenols and naphthols: synthetic and computational studies
Tomczyk, I.; Kalek, M.
Chem. Eur. J. 2024, 30, e202303916.


51. Electrochemical asymmetric diacetoxylation of styrenes mediated by chiral iodoarene catalyst
Wojciechowska, N.; Bienkowski, K.; Solarska, R.; Kalek, M.
Eur. J. Org. Chem. 2023, 26, e202300477.
(preprint: ChemRxiv, 10.26434/chemrxiv-2023-90x56)


50. Electrochemical dearomatizing spirolactonization and spiroetherification of naphthols and phenols
Sarvi Beigbaghlou, S.; Yafele, R. S.; Kalek, M.
Synthesis 2023, 55, 4173-4180.
(preprint: ChemRxiv, 10.26434/chemrxiv-2023-69wcr)


49. Nucleolar essential protein 1 (Nep1): Elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study
Jedrzejewski, M.; Belza, B.; Lewandowska, I.; Sadlej, M.; Perlinska, A. P.; Augustyniak, R.; Christian, T.; Hou, Y.-M.; Kalek, M.; Sulkowska, J. I.
Comput. Struct. Biotechnol. J. 2023, 21, 3999-4008. [Open Access PDF]
(preprint: bioRxiv, 10.1101/2023.03.21.532383)


48. Metal-free S-arylation of phosphorothioate diesters and related compounds with diaryliodonium salts
Sarkar, S.; Kalek, M.
Org. Lett. 2023, 25, 671-675. [Open Access PDF]
(preprint: ChemRxiv, 10.26434/chemrxiv-2022-v1zwx)


47. Intermolecular enantioselective dearomatizing para-methoxylation of phenols using 2-iodoresorcinol/ lactamide catalysts
Kraszewski, K.; Tomczyk, I.; Kalek, M.
Tetrahedron Lett. 2022, 108, 154127.


46. Diazonium-based covalent molecular wiring of single-layer graphene leads to enhanced unidirectional photocurrent generation through the p-doping effect
Jacquet, M.; Osella, S.; Harputlu, E.; Pałys, B.; Kaczmarek, M.; Nawrocka, E. K.; Rajkiewicz, A. A.; Kalek, M.; Michałowski, P. P.; Trzaskowski, B.; Unlu, C. G.; Lisowski, W.; Pisarek, M.; Kazimierczuk, K.; Ocakoglu, K.; Więckowska, A.; Kargul, J.
Chem. Mater. 2022, 34, 3744-3758. [Open Access PDF]


45. Regioselective dearomatization of N-alkylquinolinium and pyridinium salts under Morita-Baylis-Hillman conditions
Pareek, A.; Kalek, M.
Adv. Synth. Catal. 2022, 364, 2846-2851.
(preprint: ChemRxiv, 10.26434/chemrxiv-2022-9r2kk)


44. Synthesis of aryl sulfides by metal-free arylation of thiols with diaryliodonium salts under basic conditions
Sarkar, S.; Wojciechowska, N.; Rajkiewicz, A. A.; Kalek, M.
Eur. J. Org. Chem. 2022, e202101408.
(preprint: ChemRxiv, 10.33774/chemrxiv-2021-dv1vk)


43. Second generation of nucleotide analogues
Gołębiewska, J.; Bartoszewicz, A.; Kalek, M.; Stawinski, J.
Phosphorus Sulfur Silicon Relat. Elem. 2022, 197, 511-514.


42. Synthesis of Pummerer’s ketone and its analogs by iodosobenzene-promoted oxidative phenolic coupling
Sarkar, S.; Ghosh, M. K.; Kalek, M.
Tetrahedron Lett. 2020, 61, 152459.


41. Mechanism of iodine(III)-promoted oxidative dearomatizing hydroxylation of phenols: evidence for radical-chain pathway
Kraszewski, K.; Tomczyk, I.; Drabinska, A.; Bienkowski, K.; Solarska, R.; Kalek, M.
Chem. Eur. J. 2020, 26, 11584-11592.
(preprint: ChemRxiv, 10.26434/chemrxiv.12102771.v1)


40. Mg2+-dependent methyl transfer by a knotted protein: A molecular dynamics and quantum mechanics study
Perlinska, A. P.; Kalek, M.; Christian, T.; Hou, Y.-M.; Sulkowska, J. I.
ACS Catal. 2020, 10, 8058-8068. [Open Access PDF]


39. N-Heterocyclic carbene-catalyzed synthesis of ynones via C–H alkynylation of aldehydes with alkynyliodonium salts – evidence for alkynyl transfer via direct substitution at acetylenic carbon
Rajkiewicz, A. A.; Wojciechowska, N.; Kalek, M.
ACS Catal. 2020, 10, 831-841.
(preprint: ChemRxiv, 10.26434/chemrxiv.9946925.v1)


38. Transition metal‐free aryl‐aryl cross‐coupling: C–H arylation of 2‐naphthols with diaryliodonium salts
Ghosh, M. K.; Rzymkowski, J.; Kalek, M.
Chem. Eur. J. 2019, 25, 9619-9623.


37. Organocatalytic group transfer reactions with hypervalent iodine­ reagents
Ghosh, M. K.; Rajkiewicz, A. A.; Kalek, M.
Synthesis 2019, 51, 359-370 (invited review).


36. N-Heterocyclic carbene-catalyzed olefination of aldehydes with vinyliodonium salts to generate α,β-unsaturated ketones
Rajkiewicz, A. A.; Kalek, M.
Org. Lett. 2018, 20, 1906-1909.


35. Mechanistic insight into enantioselective palladium-catalyzed oxidative carbocyclization-borylation of enallenes
Qiu Y.; Mendoza, A.; Posevins D.; Himo, F.; Kalek, M.; Bäckvall, J.-E.
Chem. Eur. J. 2018, 24, 2433-2439.


34. Mechanism and selectivity of cooperatively-catalyzed Meyer-Schuster rearrangement/Tsuji-Trost allylic substitution. Evaluation of synergistic catalysis by means of combined DFT and kinetics simulations.
Kalek, M.; Himo, F.
J. Am. Chem. Soc. 2017, 139, 10250-10266. [Open Access PDF]


33. Caution in the use of nonlinear effects as a mechanistic tool for catalytic enantioconvergent reactions: Intrinsic negative nonlinear effects in the absence of higher order species
Kalek, M.; Fu, G. C.
J. Am. Chem. Soc. 2017, 139, 4225-4229.


32. Elucidation of mechanisms and selectivities of metal-catalyzed reactions using quantum chemical methodology
Santoro, S.; Kalek, M.; Huang, G.; Himo, F.
Acc. Chem. Res. 2016, 49, 1006-1018. [Open Access PDF]


Prior to CeNT UW

31. Phosphine-catalyzed doubly stereoconvergent γ-additions of racemic heterocycles to racemic allenoates: the catalytic enantioselective synthesis of protected α,α-disubstituted α-amino acid derivatives
Kalek, M.; Fu, G. C.
J. Am. Chem. Soc. 2015, 137, 9438-9442. [Open Access PDF]


30. Phosphine-catalyzed enantioselective intramolecular [3+2] cycloadditions to generate fused ring systems
Lee S. Y.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G. C.
J. Am. Chem. Soc. 2015, 137, 4587-4591. [Open Access PDF]


29. Mechanism, reactivity, and selectivity of iridium-catalyzed C(sp3)-H borylation of chlorosilanes
Huang, G.; Kalek, M.; Liao, R.-Z.; Himo, F.
Chem. Sci. 2015, 6, 1735-1746. [Open Access PDF]


28. Stereoselective methods for carbon-phosphorus (C–P) bond formation
Kalek, M.; Stawinski, J.
in Stereoselective Synthesis of Drugs and Natural Products; Andrushko, V. and Andrushko, N. (Eds.)
John Wiley & Sons, 2013 (ISBN 978-1-118-03217-6), pp. 1443-1472.


27. Atom-efficient gold(I) chloride-catalyzed synthesis of alpha-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols: substrate scope and combined experimental and computational mechanistic investigation
Biswas, S.; Dahlstrand, C.; Watile, R. A.; Kalek, M.; Himo, F.; Samec, J. S. M.
Chem. Eur. J. 2013, 19, 17939–17950. [Open Access PDF]


26. Mechanism and selectivity of rhodium-catalyzed 1:2 coupling of aldehydes and allenes
Huang, G.; Kalek, M.; Himo, F.
J. Am. Chem. Soc. 2013, 135, 7647-7659. [Open Access PDF]


25. Combining Meyer-Schuster rearrangement with aldol and Mannich reactions – DFT study of the intermediate interception strategy
Kalek, M.; Himo, F.
J. Am. Chem. Soc. 2012, 134, 19159-19169.


24. Computational study of the mechanism and selectivity of palladium-catalyzed SN2’ propargylic substitution with phosphorus nucleophiles
Jiménez-Halla, J. O. C.; Kalek, M.; Stawinski, J.; Himo, F.
Chem. Eur. J. 2012, 18, 12424-12436.


23. 31P NMR and computational studies on stereochemistry of conversion of phosphoramidate diesters into the corresponding phosphotriesters
Söderberg, L.; Lavén, G.; Kalek, M.; Stawinski, J.
Nucleosides Nucleotides Nucleic Acids 2011, 30, 552-564.

22. Novel, stereoselective and stereospecific synthesis of allenylphosphonates and related compounds via palladium-catalyzed propargylic substitution
Kalek, M.; Stawinski, J.
Adv. Synth. Catal. 2011, 353, 1741-1755.


21. Palladium-catalyzed propargylic substitution with phosphorus nucleophiles: efficient, stereoselective synthesis of allenylphosphonates and related compounds
Kalek, M.; Johansson, T.; Jezowska, M.; Stawinski, J.
Org. Lett. 2010, 12, 4702-4704.


20. Preparation of benzylphosphonates via a palladium(0)-catalyzed cross-coupling of H-phosphonate diesters with benzyl halides. Synthetic and mechanistic studies.
Lavén, G.; Kalek, M.; Jezowska, M.; Stawinski, J.
New J. Chem. 2010, 34, 967-975.


19. Preparation of arylphosphonates by Pd(0)-catalyzed cross-coupling in the presence of acetate additives. Synthetic and mechanistic studies.
Kalek, M.; Jezowska, M.; Stawinski, J.
Adv. Synth. Catal. 2009, 351, 3207-3216.


18. Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate
Kalek, M.; Stawinski, J.
Tetrahedron 2009, 65, 10406-10412.


17. On the sulfurization of H-phosphonate diesters and phosphite triesters using elemental sulfur
Wallin, R.; Kalek, M.; Bartoszewicz, A.; Thelin, M.; Stawinski, J.
Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 908-916.

16. Microwave-assisted palladium-catalyzed cross-coupling of aryl and vinyl halides with H-phosphonate diesters
Kalek, M.; Ziadi, A.; Stawinski, J.
Org. Lett. 2008, 10, 4637-4640.


15. Iodine-promoted silylation of alcohols with silyl chlorides. Synthetic and mechanistic studies.
Bartoszewicz, A.; Kalek, M.; Stawinski, J.
Tetrahedron 2008, 64, 8843-8850.


14. Palladium-catalyzed C-P bond formation: mechanistic studies on the ligand substitution and the reductive elimination. An intramolecular catalysis by the acetate group in Pd(II) complexes.
Kalek, M.; Stawinski, J.
Organometallics 2008, 27, 5876-5888.


13. The case for the intermediacy of monomeric metaphosphates during oxidation of H-phosphonothioate, H-phosphonodithioate, and H-phosphonoselenoate monoesters. Mechanistic and synthetic studies.
Bartoszewicz, A.; Kalek, M; Stawinski, J.
J. Org. Chem. 2008, 73, 5029-5038.


12. mRNA decapping is promoted by an RNA binding channel in Dcp2
Deshmukh, M. V.; Jones, B. N.; Quang-Dang, D.; Flinders, J. C.; Floor, S. N.; Kim, C.; Jemielity, J.; Kalek, M.; Darzynkiewicz, E.; Gross J. D.
Mol. Cell 2008, 29, 324-336.

11. Identification of efficient and sequence specific bimolecular artificial ribonucleases by a combinatorial approach
Kalek, M.; Benedikson, P.; Vester, B.; Wengel, J.
Chem. Commun. 2008, 762-764.


10. A new reagent system for efficient silylation of alcohols – silyl chloride-N-methylimidazole-iodine
Bartoszewicz, A.; Kalek, M.; Nilsson, J.; Hiresova, R.; Stawinski, J.
Synlett 2008, 37-40.


9. Kinetics of C. Elegans DcpS cap hydrolysis studied by fluorescence spectroscopy
Wierzchowski, J.; Pietrzak, M.; Stepinski, J.; Jemielity, J.; Kalek, M.; Bojarska, E.; Jankowska-Anyszka, M; Davis, R. E.; Darzynkiewicz, E.
Nucleosides Nucleotides Nucleic Acids 2007, 26, 1211-1215.

8. Interaction of human decapping scavenger with 5' mRNA cap analogues: structural requirements for catalytic activity
Darzynkiewicz, Z. M.; Bojarska, E.; Kowalska, J.; Lewdorowicz, M; Jemielity, J.; Kalek, M.; Stepinski, J.; Davis R. E.; Darzynkiewicz E.
J. Phys.: Condens. Matter 2007, 19, 285217.

7. Pd(0)-catalyzed phosphorus-carbon bond formation. Mechanistic and synthetic studies on the role of the palladium sources and anionic additives.
Kalek, M.; Stawinski, J.
Organometallics 2007, 26, 5840-5847.


6. Effective modulation of DNA-duplex stability by reversible transition metal complex formation in the minor groove
Kalek, M.; Madsen, A. S.; Wengel, J.
J. Am. Chem. Soc. 2007, 129, 9392-9400.


5. Enzymatically stable 5’ mRNA cap analogs: synthesis and binding studies with human DcpS decapping enzyme
Kalek, M.; Jemielity, J.; Darzynkiewicz, Z. M.; Bojarska, E.; Stepinski, J.; Stolarski, R.; Davies, R. E.; Darzynkiewicz, E.
Bioorg. Med. Chem. 2006, 14, 3223-3330.


4. Differential inhibition of mRNA degradation pathways by novel cap analogs
Grudzien, E.; Kalek, M.; Jemielity, J.; Darzynkiewicz, E.; Rhoads, R. E.
J. Biol. Chem. 2006, 281, 1857-1867.

3. Synthesis and biochemical properties of novel mRNA 5’ cap analogs resistant to enzymatic hydrolysis
Kalek, M.; Jemielity, J.; Grudzien, E.; Zuberek, J.; Bojarska, E.; Cohen, L. S.; Stepinski, J.; Stolarski, R.; Davies, R. E.; Rhoads, R. E.; Darzynkiewicz, E.
Nucleosides Nucleotides Nucleic Acids 2005, 24, 615-621.

2. Novel dinucleoside 5’,5’-triphosphate cap analogues and affinity for murine translation factor eIF4E
Stepinski, J.; Zuberek, J.; Jemielity, J.; Kalek, M.; Stolarski, R.; Darzynkiewicz, E.
Nucleosides Nucleotides Nucleic Acids 2005, 24, 629-633.

1. A direct method for the synthesis of nucleoside 5′-methylenebis(phosphonate)s from nucleosides
Kalek, M.; Jemielity, J.; Stepinski, J.; Stolarski, R.; Darzynkiewicz, E.
Tetrahedron Lett. 2005, 46, 2417-2421.

| The Kalek Laboratory @ Centre of New Technologies | University of Warsaw | E-mail: | Tel: +48 22 5543730 | Deklaracja dostępności